Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36555266

RESUMEN

Polyvinyl alcohol (PVA) hydrogels are well-known biomimetic 3D systems for mammalian cell cultures to mimic native tissues. Recently, several biomolecules were intended for use in PVA hydrogels to improve their biological properties. However, retinol, an important biomolecule, has not been combined with a PVA hydrogel for culturing bone marrow mesenchymal stem (BMMS) cells. Thus, for the first time, the effect of retinol on the physicochemical, antimicrobial, and cell proliferative properties of a PVA hydrogel was investigated. The ability of protein (3.15 nm) and mineral adsorption (4.8 mg/mL) of a PVA hydrogel was improved by 0.5 wt.% retinol. The antimicrobial effect of hydrogel was more significant in S. aureus (39.3 mm) than in E. coli (14.6 mm), and the effect was improved by increasing the retinol concentration. The BMMS cell proliferation was more upregulated in retinol-loaded PVA hydrogel than in the control at 7 days. We demonstrate that the respective in vitro degradation rate of retinol-loaded PVA hydrogels (RPH) (75-78% degradation) may promote both antibacterial and cellular proliferation. Interestingly, the incorporation of retinol did not affect the cell-loading capacity of PVA hydrogel. Accordingly, the fabricated PVA retinol hydrogel proved its compatibility in a stem cell culture and could be a potential biomaterial for tissue regeneration.


Asunto(s)
Materiales Biocompatibles , Células Madre Mesenquimatosas , Animales , Materiales Biocompatibles/farmacología , Alcohol Polivinílico/farmacología , Alcohol Polivinílico/química , Vitamina A/farmacología , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacología , Proliferación Celular , Hidrogeles/farmacología , Hidrogeles/química , Mamíferos
2.
J Environ Manage ; 300: 113737, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34536739

RESUMEN

Persistent Organic Pollutants (POPs) have become a very serious issue for the environment because of their toxicity, resistance to conventional degradation mechanisms, and capacity to bioconcentrate, bioaccumulate and biomagnify. In this review article, the safety, regulatory, and remediation aspects of POPs including aromatic, chlorinated, pesticides, brominated, and fluorinated compounds, are discussed. Industrial and agricultural activities are identified as the main sources of these harmful chemicals, which are released to air, soil and water, impacting on social and economic development of society at a global scale. The main types of POPs are presented, illustrating their effects on wildlife and human beings, as well as the ways in which they contaminate the food chain. Some of the most promising and innovative technologies developed for the removal of POPs from water are discussed, contrasting their advantages and disadvantages with those of more conventional treatment processes. The promising methods presented in this work include bioremediation, advanced oxidation, ionizing radiation, and nanotechnology. Finally, some alternatives to define more efficient approaches to overcome the impacts that POPs cause in the hydric sources are pointed out. These alternatives include the formulation of policies, regulations and custom-made legislation for controlling the use of these pollutants.


Asunto(s)
Contaminantes Ambientales , Plaguicidas , Cadena Alimentaria , Humanos , Contaminantes Orgánicos Persistentes , Plaguicidas/análisis , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...